Engineering bispecific exosome activators of T cells to target immune checkpoint inhibitor-resistant metastatic melanoma – Nature Biotechnology


  • Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Balch, C. M. et al. A multifactorial analysis of melanoma. IV. Prognostic factors in 200 melanoma patients with distant metastases (stage III). J. Clin. Oncol. 1, 126–134 (2016).

    Article 

    Google Scholar 

  • De Martin, E. et al. Characterization of liver injury induced by cancer immunotherapy using immune checkpoint inhibitors. J. Hepatol. 68, 1181–1190 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Giaccone, G. et al. Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study. Lancet Oncol. 19, 347–355 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adam, K., Iuga, A., Tocheva, A. S. & Mor, A. A novel mouse model for checkpoint inhibitor-induced adverse events. PLoS ONE 16, e0246168 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langer, C. J. et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 17, 1497–1508 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shui, L. et al. Bispecific antibodies: unleashing a new era in oncology treatment. Mol. Cancer 24, 212 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C., Ye, Y., Hochu, G. M., Sadeghifar, H. & Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gilardi, M. et al. Microneedle-mediated intratumoral delivery of anti-CTLA-4 promotes cDC1-dependent eradication of oral squamous cell carcinoma with limited irAEs. Mol. Cancer Ther. 21, 616–624 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mikhail, A. S. et al. Hydrogel drug delivery systems for minimally invasive local immunotherapy of cancer. Adv. Drug Deliv. Rev. 202, 115083 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, Q. et al. Nanoparticle-mediated delivery of inhaled immunotherapeutics for treating lung metastasis. Adv. Mater. 33, e2007557 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Waaler, J. et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun. Biol. 3, 196 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeVito, N. C. et al. Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Rep. 35, 109071 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodon, J. et al. Phase 1 study of single-agent WNT974, a first-in-class porcupine inhibitor, in patients with advanced solid tumours. Br. J. Cancer 125, 28–37 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diamond, J. R. et al. Phase Ib clinical trial of the anti-Frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res. Treat. 184, 53–62 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kahn, M. Can we safely target the WNT pathway. Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battistoni, A. et al. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J. Immunother. Cancer 11, e006683 (2023).

  • Wang, Z. et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng 6, 791–805 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M., Hu, S., Yan, N., Popowski, K. D. & Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024).

  • Dinh, P.-U. C. et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Commun. 11, 1064 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. W., Edwards, D. A., Langer, R. & Cheng, K. Inhalable materials and biologics for lung defence and drug delivery. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00841-y (2025).

  • Cheng, K. & Kalluri, R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracell. Ves. 2, 100029 (2023).

  • Zickler, A. M. & El Andaloussi, S. Functional extracellular vesicles aplenty. Nat. Biomed. Eng 4, 9–11 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Rayamajhi, S. & Aryal, S. Surface functionalization strategies of extracellular vesicles. J. Mater. Chem. B 8, 4552–4569 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat. Biomed. Eng 5, 1084–1098 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kugeratski, F. G. et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23, 631–641 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simpson, R. J., Kalra, H. & Mathivanan, S. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles 1, 18374 (2012).

  • Lee, K. M., Seo, E. C., Lee, J. H., Kim, H. J. & Hwangbo, C. The multifunctional protein syntenin-1: regulator of exosome biogenesis, cellular function, and tumor progression. Int. J. Mol. Sci. 24, 9418 (2023).

  • Hurley, J. H. & Odorizzi, G. Get on the exosome bus with ALIX. Nat. Cell Biol. 14, 654–655 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Li, S. P., Lin, Z. X., Jiang, X. Y. & Yu, X. Y. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol. Sin. 39, 542–551 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marquez-Rodas, I. et al. Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann. Transl. Med. 3, 267 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlino, M. S., Larkin, J. & Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Ji, R.-R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. N-Myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J. Biol. Chem. 286, 32289–32299 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khuu, C. H., Barrozo, R. M., Hai, T. & Weinstein, S. L. Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol. Immunol. 44, 1598–1605 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing BATF3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, e714 (2017).

    Article 

    Google Scholar 

  • Reschke, R. et al. Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma. J. Immunother. Cancer 9, e003521 (2021).

  • Padovan, E., Spagnoli, G. C., Ferrantini, M. & Heberer, M. IFN-α2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71, 669–676 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 72, 5209–5218 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corso, G. et al. Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule–single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J. Extracell. Vesicles 8, 1663043 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parsons, M. J., Tammela, T. & Dow, L. E. WNT as a driver and dependency in cancer. Cancer Discov. 11, 2413–2429 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajos-Michniewicz, A. & Czyz, M. WNT signaling in melanoma. Int. J. Mol. Sci. 21, 4852 (2020).

  • Li, S. et al. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J. 40, e104509 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M. & Dick, J. E. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116, 193–200 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Liu, S. et al. DNA repair protein RAD52 is required for protecting G-quadruplexes in mammalian cells. J. Biol. Chem. 299, 102770 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhenilo, S. et al. DeSUMOylation switches Kaiso from activator to repressor upon hyperosmotic stress. Cell Death Differ. 25, 1938–1951 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. FZR1 as a novel biomarker for breast cancer neoadjuvant chemotherapy prediction. Cell Death Dis. 11, 804 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hugo W. et al. mRNA expressions in pre-treatment melanomas undergoing anti-PD-1 checkpoint inhibition therapy. Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220 (2016).